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Abstract: In This paper we illustrate new methods of online nonlinear estimation

applied to the lateral deflection of an elastic beam from on board measurements

of angular rates and angular accelerations. We contrast the development of the

filter equations, together with practical issues of their numerical solution as devel-

oped from global linearization by nonlinear output injection with the usual method

of the the extended Kalman fiiter(EKF).We show how nonlinear estimation due

to gyroscopic coupling can be implemented as an adptive covariance filter using

off-the-shelf Kalman filter alghorithms. The effect of the global linearization by

nonlinear output injection is to introduce a change of coordinates in which only

the process noise covariance is to be updated in online implementation. This is in

contrast to the computational approach which arises in EKF methods arising by

local linearization with respect to the current conditional mean. We also highlight

processing refinements for nonlinear estimation based on optimal ,nonlinear inter-

polation between observations. In these methods the extrapolation of the process

dynamics between measurement updates is obtained by replacing a transition ma-

trix with an operator spline that is optimized off-line from responses to selected

test inputs.
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1 Introduction

In this paper, a new nonlinear, nonparametric method is proposed for off-

line modeling and on-line estimation of nonlinear dynamic systems. For

illustration, it is applied to the estimation of the deformation of an elastic

structure,undergoing rapid rotational maneuvers.

In these circumstances,the structural stiffness and damping coefficients

depend on the angular acceleration &,the angular rate w and the square of

the angular rate .In the single axis case,the excitation of the structure is

represented by the vector u T = (&,w2,2w),to which the structural dynam-

ics responds as a "bilinear"( i.e., parametrically excited) system. A similar

technique for multiaxial rotations yields a bilinear model with respect to
matrix valued excitations.

Two methods of estimation and modeling are combined to achieve de-
formation state determination:

• A method based on a feedback linearized procedure which gives an esti-

mate by a filter constructed from the equivalent linear dynamics,which
is faster than the extended Kalman filter.

• The modeling of the deformation state of the structure by means of a

Volterra series interpolator.

2 Simplified Model of a Deformable Structure and Equations
of Motion

For purposes of illustration of the principles involved,the structure will con-

sist of a primary mirror, attached to a spacecraft (containing the hardware

of the slewing controller),and a secondary mirror attached to the central

one in the shape of a Cassegrain telescope by means of massless links.The

primary mirror structure will also be regarded as attached to the spacecraft

by means of a massless link. Equivalently the same model can be thought to

represent a laser beam expander,as in Figure 1 . More realistic models, such

as in [1] or [2], exibit the same form of interaction between the rotational

and vibrational dynamics. The simplified telescope part of the structure

can itself be modeled as a system of two masses attached together by a sin-

gle "equivalent" link,with "equivalent" stiffness and damping coefficients,so

that the same restoring and dissipation forces at the secondary are obtained

as if wilh more than one link.The modeling of such a deformable body is
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summarizedin Figure2 .
If onetakesnowonly the vibrationalequationof motion,andset therota-
tion arounda singlea_s53,i.e,5 =0_3,andif thetranslationalacceleration
term is substitutedfrom the translationalequation,then one finds:

_Atj_+ (C + 20jM)p + (K + (/_"+ j02)JM)y + (/J + 02J)JMp = f (1)

where j is not an inertia term,but rather an augmented symplectic matrix,

made°fbl°cks (01 -1) while M is a m°dified structure mass matrix t°0

account for contributions due to translation,and pis the 2n x 1 matrix compo-

nents of the vectors Pi from the undeformed appendage mass centers. Here

y denotes the (2n x 1) (for planar motion or(3n x 1) for out of plane motion)

matrix of deflection coordinates of the center of mass of n appendages from

their undeformed positions,n = 2 in the case of the secondary mirror and

the spacecraft platform regarded as appendages of the primary.

f is the (2n x 1) (say, 4 x 1 here)matrix of body coordinates of external

forces acting on the centers of mass of the n appendages.

All other notations used are found in [12],[13].

Let now 7/be a new variable such that

r/= M(y + p)

and let

as well as

(2)

= CM -a (3)

h" = KM-' (4)

ur : (_,_2,2_) (5)

Then the vibrational equation of motion becomes:

+ (_ + uj)_ + (A"+ _,j + _3J_)0 = f + Kp (6)

This transformed equation can also be written in the bilinear form ,which

will be used frequer, tly in the following sections,

_[ =mx + B(X)u + b (7)

A = ( [0][_/?] [_[Ic]-]) (8)

where:
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and
B(X)= { [0] [0] [0]Jx_ J_x_ Jx2} (9)

[0] ) (10)b= f+Kp

while Xland X2 are the vector components of the state vector X = (rlT, 7"IT) r.

This simplified model,insofar as the finks are regarded to be mass-less ,

exibits all the coupling effects between slewing motion and vibrational mo-

tion.A distributed model under the assumption of symmetry about the mass

center also yields product terms between 02 and structural deformations, and

can be found in Chapter 9 of the book by Junkin_ and Turner[3]. That model

of a symmetric four appendage spacecraft can also be used to illustrate the

procedures being developed in this study,if desired, although damping must

be present, so that the matrix A above will be stable. A slewing Timo-

shenko beam model likewise exhibits this gyroscopic coupling effect, and

also accounts for damping, so that A becomes stable, as found in [4].

3 Estimation of the state by means of observers

This part of the estimation technique will deal mainly with updating the
state from sensor data.

3.1 Extended Kalman filter formulation

Usually,when one deals with a nonlinear system of which the state variables

cannot "all be observed (or are corrupted with noise) 3hen the most com-

monly used method of filtering or smoothing is the extended Kalman filter

formulation [5]. Let the dynamical system be modeled as shown,

{ _ = f(,) + a(_)u* + a(_)_y = h(x + v) (11)

where u* is the deterministic(mean) part of the input,_ is a zero mean input

noise,and h is defined in our case as h = (hT,hT) T, where

hi(.) : j_-l(._ n) (12)h_(.) = M-'(.)

Let Ri_(t - r) = E[ui(t)ui(r) T] be the covariance matrix of the sensor noise

vectors v;, with R = diag(RuR2) and let Q_(t- r) = E[_(t)_(r) T] be
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the covariancematrix of the actuatornoise with vi and _ presumed to be

uncorreiated for simplicity.

The propagation error matrix is defined by P ,which satisfies the following

Riccati differential equation along the estimated state trajectory &:

"Of1 p "Of lT
P = [-_zj_ + P[-ff_zje: + G(_)QG(i:) T-

Oh T 1 Oh T

P[-_x]s:R-[_xx]_ P (13)

can be expressed as an observer,

{ _ = f(_)+ C(_)u* + g(y- 0) (14)
= h(&)

where K is the extended Kalman gain , and is defined as follows:

prOhlT u-1
K= t_xxjh_,_ (15)

A procedure [6] based on a change of variables, in preliminary studies gave

a faster computation time .This procedure is outlined next.

3.2 Feedback linearized procedure:

The idea is to change the state configuration of the original system ,which

has the particular form below:

{ kl = Fl(xl)x2 (16)

= hi(x1 + (17)
Y2 = h:(x2+ v2)

By using the change of variables x_ = xl, x_ = Fl(za)x2,

u'= _:1 = F2(x)u*+ f2(x) and y_ = hll(yl),y_ = h_-l(y2) one gets

{.Xt I _ Xt2

= + (18)

where _ = F1F2_ and u_ = Flui,so that the covarimace of_ _ is approximated

by

Q' = FI(_q)F2(_c)QF2(k)T FI(i:I) T (19)
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while that for u_ is approximated by

= F,( I)R FI(Yl) r (20)

Then the new error cowriance matrix propagation is derived from the fol-

lowing Riccati differential equation:

/5, /'[0] [l])p, p,([O] [0])+= \[0] [0] + \[I1 [0]

p, ([/] [0]'_ n'-I ( [I1 [0]_ p, (21)
[0] [I]] \[0] [l]j

The observed deformation state is also propagated in the usual manner:

[°])

,,,[i]j + p,(t, to)R,(t)_, (h,[;l. ) [01 y(t) (22)

where the innovation process gain is now given as follows:

K'= P'(t,to)R'(t) -1 (23)

For the case of single axis slew-induced structural deformation estimation

one has F1 = I and F2 = lower half of B(X) defined by equation (2). In

particular,one finds R_ = Ri ,so that,in contrast to the extended Kalman

filter,only the P'- independent forcing term of the equation (21) given by

Q' has to be updated, all oefficients being now constants. In dealing with

this procedure a 25% increase in speed, with comparable accuracy has been

found in preliminary simulations discussed below. The problem in using

either one of those two estimation techniques (even the faster one) in more

realistic models than the example used here, is the high dimensionality of

the filter then required, which may not be accommodated by the on-board

data processing rate, causing estimation delays.
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3.3 Estimation Examples:

A simplifiedmodelof a beamexpanderwasrepresentedby aprimarymirror
masselasticallylinked to a secondarymirror massaccordingto the simpli-
fied modeloutlined in Section2. Restoringforcesand dissipativeforces
proportionalto relativesecondarymirror motionweremodeledat the sec-
ondary.Thestructural parametersarefoundin the companionexamplein
Subsection5.1. A piecewiseconstantangularaccelerationwascommanded,
representingthe acceleration--decelerationprofileof aminimumtime retar-
getingmaneuver.Thecommandedangularaccelerationprofilewas:

f 0.3rad.s-2 if 0 < t < .5(s);
d_(t)

-0.3rad.s -2 if.5(s) < t < l(s);

Presumed angular accelerometer and gyro noise covarianccs were trans-

formed into equivalent process noise for the feedback-linearized filter,with

the additional simplification of neglecting a square noise term correspond-

ing to the second entry u2 = .,2 of the equivalent input u. Presumed strain

gauge sensor noises were taken from the literature. The sensor noise covari-

ance matrix was modeled as a diagonal matrix with all diagonal elements

equal to 0.00018 .Likewise the input covariance for ul was 0.000005 and for

u3 was 0.00001 . The input covariance related to the input us was supposed

to be negligible with respect to the other two. Two simulations were made

, each one of them to illustrate the two methods of estimation described

above.The first simulation was made without active bias suppression, i.e

f = 0 in equation (10), the results being shown in Figures 3, 4. The sec-

ond simulation was made with the use of bias suppression making b = 0 in

eqaution (7) by letting f = -Kp,the results being shown in Figures 5, 6.

4 Off Line Modeling

In this section the method of Optimal Bilinear System Interpolation is used.

In this technique the dynamical system is represented in in bilinear form (by

active suppression ,if needed, of the bias term b),

{ X =AX+B(X)u (24)
y = cTX

where B(X) = [BIX [ B2X [...]. This also means:
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• The (I/O) behavioris highlynonlinear.

• Themodelishighdimensionalif arisingfromCarlemanlinearization.

• Thereis nocleanARMA modelfor systemidentification.

Then,by usingoptimal interpolation one finds:

• A closed form,circuit-implementable, reduced order, decoupled model

which is also bilinear:cf. Figure 7.

• (I/ O)-based system identification can be used to tune the model to

known responses to designer-selected typical excitations.

• The dimension of the new system model is equal to the number of test

signals.

In the present application, the model is "a priori" bilinear by the choice made

for the inputs, so that the dimension is that of the structural model, here

given by the number of mass points. For more realistic structural models,

the filter dimension would nevertheless be high. Rather than tolerate the

time delay found in the previous techniques of estimation, the method of

operator spline interpolation can be used, to find the deflection amount

between observations. The input-output (I/O)operator V,

V :u -_ y (25)

from the excitation vector u to an output vector y (such as v given by

equation (2)) is imbedded in a Hilbert space of (I/O)operators of candidate

bilinear systems, equipped with a reproducing kernel, see equation (31)

Kt(u, v) = exp/ uT(s)n-lv(s)ds
to

(26)

282



wherethe weightmatrix R is determinedby eigenvaluesof A in equation

(24), which in the context of the present application corresponds to bounds

on the structural frequencies. An interpolator of the form

= ¢) (27)
i

is constructed,tuned so that the structural responses to preselected test

inputs u i are recorded,and optimally interpolating at system level the re-

sponses to other excitations in the signal class.

If the recorded system responses yi to the test input u i are reliably known,the

'tuned' coefficients ci are obtained by solving the matrix equation

a(t)c(t) = y(t) (28)

where c(t) = col{ci},_(t) = col{yi(t)} and G(t) = {h't(ui,uJ)}_j. A more

complex matrix equation yields the ci for uncertain yi:cf.[7], [8],[9]. The

optimization leading to the functional interpolator lYt is formulated as a

minimization of the maximum distance between the interpolating operator

and any candidate operator that matches the experimental input--output

signals. If the system data are not accurate, a weighted minimization that

does not require exact matching of system responses can also be used. This

minimization is carried out in a Hilbert space of input-output operators

equipped with a weighted "Fock space" scalar product which is the Hilbert

sum of the causal (i.e., with lower triangular domains of integration) L 2

scalar products of the kernels of the Volterra series of the operators in ques-

tion,for which Kt is the reproducing kernel. The general method is discussed

in [9], although causality was differently implemented there,since symmetric
kernels were used.

The Hilbert space structure for m inputs(here m = 3) is defined as follows:let

hn,i, .....i,,(t, ta,. ..,tn) = cT exp{(t - tl)A}Bi, ...

... exp{(t,__x - tn)A}Bi, exp(tnA)X(O) (29)

where B(X) = [BI(X) ] B2(X)I ...] and il,...,in E {1,... ,m}.

These are the Volterra kernels for ui_(tl),...,ui,(t,_) so long as triangu-

lar integration is used as in equation (30). Then the inner product is given

as shown ,

/0'£< Vt, Vt >= _n _il... _i_ ria.., ri, ...
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0t" hn,d ..... i,(t, tl,...,t,_)h,_,i_ .....i,(t,tl .... ,tn)

dt. . ..dtl (30)

with designer-selected weights ri > 0 corresponding to R = diag{ri}, which

yields the reproducing property:

< V_, K,(u, .) >= Vt(u) (31)

The Volterra series for a bilinear system will yield a bounded norm < Vt, Vt >

provided the weights rj are chosen so that

- N

where N = dimX and "a" is a bound on the real parts of the eigenvalues

of A, so that I]exp(At)ll 2 < N.exp(-2at) . The bound (32) is obtained af-

ter cancellation of intermediate exponents in the factors exp{-2a(ti-1 - ti},

which can be interchanged when computing L 2 bounds of Ihn,ia ..... i.(t, tl,..., tn)l,

to guarantee negativity of the remaining exponential coefficients. The same

bound is sufficient for having ]_(t)l = I_(u)l _ 0 as t _ oo when u is

L 2 (Square integrable), as is found by use of the reproducing property (31)

(Lower bounds are also needed when the inputs are not L 2 ,but are bounded

almost everywhere:Dwyer,[7]). The advantages of such modeling are:

• The model dimension is equal to the number of test inputs.

• The modeling error is distributed throughout the chosen input sig-

nal class (i.e by frequency or amplitude), rather than depending on

nearness to a single reference input.

• The interpolated signal(response) can be proven to converge asymp-

totically to the true system response for any (unknown) excitation in

the chosen signal class.

In this technique of modeling,the real data r}(i), _(i) can be recorded by ex-

citing the real system with (constant or nonconstant)test inputs to construct

the interpolator.The test inputs can be chosen to approximate the expected

excitations of the system. Thus, the real system time responses are used for

model matching, rather than responses synthesized from the mathematical
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model.
The problemwith this technique,however, lies in the fact that storage of

curves is required in order to compute the ci's. The number of stored curves

is equal to m x k x I N, where m is the number of test inputs,k is the di-

mension of the output vector y, N the dimension of the state to be modeled

and I is the number of possible initial values of each component.This diffi-

culty does not allow the system to run in real time: e.g.,for the case of n

point masses linked by massless but elastic connections one has N = 2n and

k = n when measuring deflections or k = N = 2n if full state information is

required in the planar motion case.

5 Interpolator-Based Estimation:

In this section, the two last techniques are combined to create a more effec-

tive one by making use of the transition matrix spline of the bilinear system
of the model:

_(t) = _(t, tk)_(t, tk) (33)

In fact, the matrix-valued operator spline _ interpolates the transition ma-

trices ¢i corresponding to the bilinear system model excited by constant

or piecewise constant test inputs u(i}.This permits the construction of the

response of the real time system in piecewise closed form,thereby replacing

response curve storage by an analytic transition matrix generator, rather

than the construction of the coefficients interpolator c/from the output test

signals yT = (yl,y2,... ,ym).

One gets each entry c_q of the matrix valued spline coefficients ci by let-

ting ._i = ¢_,q in equation (28) where ¢_'qis the (p, q)-entry in the transition
matrix with constant u (i) :

= e p{(a+ (34)
J

The interpolated transition matrix is then used to update between obser-

vations the structural state estimates obtained from an adaptive covariance

filter based on a globally feedback-linearized transformation(seen in Section

3.2) of the bilinear structural model.

This last technique has the following features:

• _ is open loop, with _) made to match the real system at discrete
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intervals by re-initializing:

In contrast,the direct modeling of the I/O operator

/'F}= _ ci(t)ezp uT R -1 u_dt (36)
!

continuously tracks the true system time responses T/_(t),but in this case

ci(t) cannot be generated analytically and must be computed off-line.

• The presence of an additive input does not give rise to a steady state

tracking error observed in the earlier literature when additive as well as

multiplicative inputs axe present, as is the case for rapidly slewing struc-
tures.Indeed, a convolution correction based on @ can be added, eliminating

the need for active suppression of the bias term b in equation (7).

• The number of curves to be generated is only m x N 2 instead of

m × k x/N,(where again N = 2n for the example of a structure composed

of point masses connected by elastic append_es and in plane motion).

, The possibly high dimensional recursive filter can run at a slower sam-

piing rate chosen to be consistent with on board CPU capabilities.

5.1 Interpolation Example

An interpolator was designed for the same two bodies beam expander model

previouslydescribed:The interpolatorwas optimizedforinputvectorsu.T =

(ul, us, u3) of the form (constant, O, 0), (O,constant, 0) and (0, 0, constant)

,chosen with a positive constant during the first half of a 1 second nominal

minimum time rotation, and negative during the second half, for the first

test input vector.The same positive constant was chosen throughout the 1

second repointing for the second and third test input vectors, this qualita-

tively correspond to the nominal angular motion where _ is a square wave

beginning at +0.3 and reversing, which yields positive (though not constant)

values for _2 and 2w :cf.Eq.(5). The constants were selected for boundedness

of the interpolator according to [7],[8]. For the sake of convergence of the

interpolator to the actual output of the system, and in the case of applying

test inputs which are not square integrable ,the matrix R described above

in the reproducing kernel analytical form should have diagonal elements

satisfying the following condition:

a/n- -IIB II #  <
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r XllBill 2 <

a/m + 2- ]IB;II2NA? (37)

If A is N x N,HBill 2 = _pq bi2,pqwhere bi,vq is the (p,q) element of Bi, then

Xi, which is the upper limit of the i-th test input component, must be chosen

to satisfy the bounds below,

o < < a/mvf ilBdl (38)

where a is an upper bound on the real parts of the eigenvalues of the matrix

A ,and m is the number of test inputs applied to the interpolator. Indeed,

the bound (41) allows selecting positive r_s in the inequality (37), which

itself occurs in obtaining bounds on !)(t) = Vt(u) from equation (34), to

guarantee _(t) _ 0 :of.[6]

In case the applied test inputs are square integrable, as will be chosen on

the example, one needs only a simpler form of bounds for ri described as

follows,which implies the inequality (32) if all ri are the same,

o _<,- _NIIBdl2 _<2aim (39)

The data used to drive this example are very near to those of a space

based laser model:

J0 = 20,556kg.m 2, m ° = 10,720k9, m 1 = 152kg, pl = (0, 14.421m) T

(1642 1::568) ' C=(162 :::7)K = 121.6 120

The nondiagonal form of the above matrices K and C is due to the fact that
the two links that hold the small mirror in the top can be regarded as an

equivalent link with equivalent stiffness and damping matrices ,as shown in

[13].

Now by applying those data to the system and by the choice of constant = .3

in the test inputs, one finds 0 _< ri _< 1/12 where ri = r for all i, giving

R = diag(ri) = r[I]mxm .Two series of simulations were made. In each

one of them two alternatives , namely, bias elimination ,i.e., b -- 0 or no

external tip forces ,i.e, f = 0 are considered. In the first series of simulations

the interpolator was used over the entire minimum time lsecond maneuver
and thereafter.The results for the case of lateral deflection of the appendage

are shown in Figures 8,9. It is important to notice here that in case of

bias presence, a numerical convolution product was used with the original
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transitionmatrix ¢(t,tk) aswellaswith the interpolatedtransitionmatrix
_(t,tk) for the sakeof errorcomparisons."Original"in theplotsmeansthe
numericalsolutionof Eq.(1) , "discrete"meansthe numericalcomputation
of Cu(t,0)x(0)+ ¢_,(t,.), b. One last numerical diffuculty was observed, in

addition to care needed in generating the contribution from b by convolution

(at least in this unusual beam expander example). That was the singular-

ity of Eq.(28) at t=0 as already discussed in [9],which caused numerical

unreliability during the first 0.25 seconds of this motion. Thus "transient

error" is consistent with the "adaptive" nature of the interpolator which

must "learn" from the system resonse to alleviate this numerical diffuculty,

in the other series the state estimated in the example of section 3.3 was

used to re-initialize the interpolator each .5s The results are shown in Fig-

ures 10,11. The re-initialization from the estimated state at given moments

yielded better results than when using the same interpolator throughout.

6 Concluding Remarks

Filter alghorithms combine the propagation of measurements "between" ob-

servations with updating of measurements "across" observations. Such up-

dating to account for new observations has been shown here to be obtainable

from an estimator based on a globally feedback-linearized model of a nolo-

linear process.

In case nonlinear transformation of the observed part of the process

state is required , it was shown that the associated matrix Riccati differen-

tial equation for the propagation of the estimation error covariance needs

to be updated only in its "driving" term, giv,., by the process noise co-

variance . In contrast, all the coefficients of the Ricatti equation for the

corresponding extended Kalman filter must be updated, so that consider-

able CPU time is saved by pre-linearization, although the filter dimension
is the same. Dimension reduction between measurements is therefore still

desirable, motivating the next part of this work, which is reviewed below.

If the process dynamics is "parametrically excited", e.g. by gyroscopic cou-

pling, it was then shown how the process state can be propagated between

observations by interpolation of the input-output operator that maps the

process excitation to the (time-varying) state transition matrix. This inter-

polator was shown to be simultaneously optimized to match the measured

system response to a set of pre-selected "test inputs", which if chosen piece-

wise constant can also be encoded analytically in closed form.

Since the interpolator dimension is determined by the dimension of the pro-

)
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cessstate ,it is thereforefasterto periodicallyre-start the interpolator at
therate thefeedbacklinearizedfilter( oranyother)canprocessfull statein-
formatioll, ratherthan betieddownto thefull orderfilter processingrate.
New resultswerethengivenon the applicationof the methodto the on-
line estimationof transversedeflectionsof a rapidly slewing,gyroscopically
slew-coupledbeamexpander,previouslyreportedin [12]. Applicationsto
line of sightdisturbanceerrorboundestimationin slidingcontrolfollowing
[10]arealsooutlinedin [11]. the interpolationtechniquemayalsobeused
to update observationsfor multi-axis motion of multibody systems, but
this latter workis still undeveloped.
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